Durée: 60 minutes

Algèbre linéaire Test intermédiaire SV Automne 2024

Enoncé

Pour les questions à **choix multiple**, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Pour les questions de type **vrai-faux**, on comptera :

- +1 point si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Notation

- Pour une matrice A, a_{ij} désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur ${\pmb x} \in \mathbb{R}^n, \, x_i$ désigne la i-ème composante de ${\pmb x}$.
- $-I_m$ désigne la matrice identité de taille $m \times m$.
- $-\mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-\mathbb{M}_{m\times n}(\mathbb{R})$ désigne l'espace vectoriel des matrices de taille $m\times n$ à coefficients réels.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

Question 1: Soient

$$\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\} \quad \text{et} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} \right\}$$

deux bases de \mathbb{R}^3 . Soit P la matrice de changement de base de la base \mathcal{B} vers la base \mathcal{C} , telle que $[x]_{\mathcal{C}} = P[x]_{\mathcal{B}}$ pour tout $x \in \mathbb{R}^3$. Alors la deuxième ligne de P est

Question 2: Soit $\mathcal{B} = \{2 - t, t + t^2, -1 + t^3, -1 - t + 2t^2\}$ une base de \mathbb{P}_3 . La quatrième coordonnée du polynôme $p(t) = t + 2t^2 + 3t^3$ par rapport à la base \mathcal{B} est égale à

$$\square$$
 -7. \square $\frac{1}{7}$. \square - $\frac{1}{7}$. \square 3.

Question 3: Soit $T \colon \mathbb{R}^2 \to \mathbb{R}^4$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c} x\\y \end{array}\right)\right) = \left(\begin{array}{c} x-y\\x-y\\-5x+6y\\x+y \end{array}\right).$$

Alors

$$\Box$$
 T est injective mais pas surjective. \Box T est surjective mais pas injective. \Box T n'est ni injective ni surjective.

Question 4: Soit

$$A = \begin{pmatrix} 0 & 0 & 0 & 3 & 0 \\ 2 & \sqrt{3} & \pi & 3 & \sqrt{2} \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & \pi & 3 & \sqrt{2} \\ \sqrt{3} & 1 & \pi & 3 & \sqrt{2} \end{pmatrix}.$$

Alors

$$A = \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 5 & -1 \\ 1 & -1 & 2 & 2 \\ 3 & 1 & 0 & 1 \end{pmatrix}.$$

Alors l'inverse $B = A^{-1}$ de la matrice A est tel que

$$b_{33} = \frac{4}{39}$$
. $b_{41} = \frac{1}{3}$. $b_{33} = -\frac{1}{13}$. $b_{43} = \frac{2}{3}$.

Question 6: Soit W l'espace vectoriel des matrices symétriques de taille 2×2 et soit $T: \mathbb{P}_2 \to W$ l'application linéaire définie par

$$T(a+bt+ct^2) = \begin{pmatrix} a & b-c \\ b-c & a+b+c \end{pmatrix}$$
 pour tout $a,b,c \in \mathbb{R}$.

Soient

$$\mathcal{B} = \left\{ 1, 1 - t, t + t^2 \right\} \qquad \text{et} \qquad \mathcal{C} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

des bases de \mathbb{P}_2 et W respectivement. La matrice A associée à T relative à la base \mathcal{B} de \mathbb{P}_2 et la base \mathcal{C} de W, telle que $[T(p)]_{\mathcal{C}} = A[p]_{\mathcal{B}}$ pour tout $p \in \mathbb{P}_2$, est

Question 7: Le système d'équations linéaires

$$\begin{cases} x_1 + 2x_2 + 5x_3 - 4x_4 = 0 \\ x_2 + 2x_3 + x_4 = 7 \\ x_2 + 3x_3 - 5x_4 = -4 \\ 2x_1 + 3x_2 + 4x_3 - 3x_4 = 1 \end{cases}$$

possède une solution unique telle que

Question 8: Soit

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 3 & -1 & 3 \\ -1 & 1 & 1 \end{pmatrix}.$$

Les valeurs propres de A sont

$$\boxed{ }$$
 -2 et 3. $\boxed{ }$ -1 et 1. $\boxed{ }$ -1 et 2.

Deuxième partie, questions de type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 9: Si A et B sont deux matricule, alors $A + B$ est aussi inversible.	rices inversible	s de taille $n \times n$ telles que $A + B$ n'est pas la matrice
	VRAI	☐ FAUX
Question 10: Soit $\{b_1, \ldots, b_m\}$ une b $Ax = b_k$ possède au moins une solution p		A est une matrice de taille $m \times n$ telle que l'équation $1, \ldots, m$, alors $\mathrm{Im}(A) = \mathbb{R}^m$.
	☐ VRAI	☐ FAUX
		m < n. Si la forme échelonnée réduite de A possède ens du système homogène $Ax = 0$ est un sous-espace
	VRAI	☐ FAUX
Question 12: Soit A une matrice de $T(\mathbf{x}) = A\mathbf{x}$, pour tout $\mathbf{x} \in \mathbb{R}^n$. Si A est t		soit $T \colon \mathbb{R}^n \to \mathbb{R}^n$ l'application linéaire définie par 0, alors T est surjective.
	VRAI	☐ FAUX
Question 13: Soient V et W deux esp Si dim(Ker T) = dim V , alors Img T = {	_	et soit $T\colon V\to W$ une application linéaire.
	VRAI	☐ FAUX
Question 14: Soit q un polynôme de d	degré 3 quelcon $\{p \in \mathbb{P}_3 : q(0)\}$	
est un sous-espace vectoriel de \mathbb{P}_3 .	$p \subseteq \mathbb{I}_3 \cdot q(0)$	p(0) = 0
	VRAI	☐ FAUX
Question 15: Soit $A \in \mathbb{M}_{4\times 4}(\mathbb{R})$ une m dants dans \mathbb{R}^4 , alors $A\boldsymbol{u},A\boldsymbol{v},A\boldsymbol{w}$ sont li		3. Si $\pmb{u}, \pmb{v}, \pmb{w}$ sont des vecteurs linéairement indépendents dans \mathbb{R}^4 .
	VRAI	☐ FAUX
		engendré par $p_1, p_2, p_3, p_4 \in \mathbb{P}_5$. Si dim $(W) = 4$, alors $\mathcal{B} = \{p_1, p_2, p_3, p_4, p_5, p_6\}$ est une base de \mathbb{P}_5 .
	☐ VRAI	☐ FAUX